
CNT 4603: Scripting – Windows PowerShell – Part 3 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Fall 2012

Scripting – Windows PowerShell – Part 3

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603/fall2012

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 2 Dr. Mark Llewellyn ©

The PowerShell Environment

• The version of PowerShell that we are looking at is a standard

CLI (Command Line Interface) shell.

• The syntax for using PowerShell from the CLI is similar to the

syntax used for other CLI shells.

• The fundamental component of a PowerShell command, is of

course, the name of the command to be executed.

• In addition, the command can be made more specific by using

parameters and arguments to the parameters.

• Therefore, a PowerShell command can have any of the

formats shown on the next page.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 3 Dr. Mark Llewellyn ©

The PowerShell Environment

• In PowerShell, a parameter is a variable that can be accepted

by the command, script or function. An argument is a value

assigned to a parameter.

• Although these terms are often used interchangeably,

remembering the difference will be helpful when working with

PowerShell.

• The following page illustrates all of these forms:

[command]

[command] –[parameter]

[command] –[parameter] –[parameter] [argument1]

[command] –[parameter] –[parameter] [argument1],[argument2]

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 4 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 5 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 6 Dr. Mark Llewellyn ©

The PowerShell Environment

• As with all CLI-based shells, you need to understand how to

navigate the PowerShell CLI to use it effectively.

• The table on the following page lists the editing operations

associated with various keys when using the PowerShell Console.

• Most of the features of PowerShell are native to the cmd prompt,

which makes PowerShell adoption easier for administrators

already familiar with the Windows command line.

• The only major difference is the Tab key which is enhanced in

PowerShell beyond the capabilities in the cmd prompt. In

PowerShell the Tab key can be used to auto-complete commands,

variables, parameter names, and even allowable operations on

variables. Try some out!

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 7 Dr. Mark Llewellyn ©

PowerShell Console Editing Features

Keys Editing Operation

Left and Right Arrows Moves cursor left and right through the current command line.

Up and Down Arrows Move up and down through the list of recently typed

commands.

Insert Switches between insert and overstrike text-entry modes.

Delete Deletes the character at the current cursor position

Backspace Deletes the character immediately preceding the current cursor

position.

F7 Displays a list of recently typed commands in a pop-up

window in the command shell. Use the up and down arrows to

select a previously typed command, and then press Enter to

execute the selected command. Use the ESC key to hide pop-

up window.

Tab Auto-completes command line sequences. Use the Shift+Tab

sequence to move backward through a list of potential matches.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 8 Dr. Mark Llewellyn ©

Press F7 to pop-up this

recent history of activity

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 9 Dr. Mark Llewellyn ©

Understanding Cmdlets In PowerShell

• Cmdlets are a fundamental part of Powershell’s functionality.

They are implemented as managed classes (built on the .NET

Framework) that include a well-defined set of methods to

process data.

• A cmdlet developer writes the code that runs when the cmdlet

is classed and compiles the code into a DLL that’s loaded into

a PowerShell instance when the shell is started.

• You already saw in a previous set of notes that cmdlets are

always named with the format Verb-Noun where the verb

specifies the action an the noun specifies the object to operate

on.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 10 Dr. Mark Llewellyn ©

Understanding Cmdlets In PowerShell

• Because cmdlets derive from a base class, a number of

common parameters, which are available to all cmdlets, can be

used to help provide a more consistent interface for

PowerShell cmdlets.

• These common parameters are shown in the tables on the next

two pages.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 11 Dr. Mark Llewellyn ©

Common Cmdlet Parameters In PowerShell

Parameter Data Type Description

Verbose Boolean Generates detailed information about the operation,

much like tracing or a transaction log. This parameter

is effective only in cmdlets that generate verbose data.

Debug Boolean Generates programmer-level detail about the operation.

The cmdlet must support the generation of debug data

for this parameter to be effective.

ErrorAction Enum Determines how the cmdlet responds when an error

occurs. Values are Continue (default), Stop,

SilentlyContinue, and Inquire.

ErrorVariable String Specifies a variable that stores errors from the cmdlet

during processing. This variable is populated in

addition to $error.

OutVariable String Specifies a variable that stores output from the cmdlet

during processing.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 12 Dr. Mark Llewellyn ©

Common Cmdlet Parameters In PowerShell

Parameter Data Type Description

OutBuffer Int32 Determines the number of objects to buffer before

calling the next cmdlet in the pipeline.

WhatIf Boolean Explains what happens if the cmdlet is executed but

doesn’t actually execute the command.

Confirm Boolean Prompts the user for permission before performing any

action that modifies the system.

NOTE: The last two parameters in the table, WhatIf and Confirm, are

special in that they require a cmdlet to support the .NET method

ShouldProcess, which might not be true for all cmdlets. The

ShouldProcess method confirms the operation with the user, sending

the name of the resource to be changed for confirmation before

performing the operation.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 13 Dr. Mark Llewellyn ©

Understanding Cmdlets In PowerShell

• When you’re first starting to work in PowerShell, the get-help

and get-command cmdlets can be quite useful.

• You already saw a few instances of the get-help cmdlet in the

first set of PowerShell notes.

• PowerShell has two parameters for the get-help cmdlet:

 -detailed, and –full.

• The –detailed parameter displays additional information about a

cmdlet, including descriptions of parameters and examples of

using the cmdlet. The –full parameter displays the entire help file

for a cmdlet, including technical information about parameters.

• The table on the next page illustrates the sections returned by help.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 14 Dr. Mark Llewellyn ©

Help Section Description

Name The name of the cmdlet

Synopsis A brief description of what the cmdlet does.

Detailed Description A detailed description of the cmdlet’s behavior, usually including

usage examples.

Syntax Specific usage details for entering commands with the cmdlet.

Parameters Valid parameters that can be used with this cmdlet.

Input Type The type of input this cmdlet accepts

Output Type The type of data this cmdlet returns

Terminating Errors If present, identifies any errors that result in the cmdlet

terminating prematurely.

Non-Terminating Errors Identifies noncritical errors that might occur while the cmdlet is

running but don’t cause the cmdlet to terminate.

Notes Additional details on the cmdlet

Examples Common usages examples for the cmdlet

Related Links References to other cmdlets that perform similar tasks.

Components of get-help

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 15 Dr. Mark Llewellyn ©

Understanding Cmdlets In PowerShell

• The get-command cmdlet is also quite useful as it lists all the

available cmdlets in a PowerShell session.

• It is more powerful than get-help because it lists all

available commands, including cmdlets, scripts, aliases,

functions, and native applications in a PowerShell session.

• The next couple of pages illustrate some variations of the get-
command cmdlet.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 16 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 17 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 18 Dr. Mark Llewellyn ©

Variables In PowerShell

• In most shells, the only data that can be stored in a variable is

text data. In advanced shells and programming languages,

data stored in a variable can be almost anything, from strings,

to sequences of objects.

• Similarly, PowerShell variables can hold just about anything.

• To define a PowerShell variable, you must name it with the $

prefix, which helps delineate variables from aliases, cmdlets,

filenames, and other items a shell operator might need to use.

• A variable name is case sensitive and can contain any

combination of alphanumeric characters (A-Z,a-z,0-9) and the

underscore (_) character.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 19 Dr. Mark Llewellyn ©

$MSProcesses = get-process | where {$_.company –match “.*Microsoft*”}

The variable $MSProcesses

holds a collection of

Microsoft processes that are

currently running on the

system.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 20 Dr. Mark Llewellyn ©

Variables In PowerShell

• When a PowerShell session is started, a number of built-in

variables are defined automatically.

• These variables are often helpful with various system

administration duties. Becoming familiar with them as well as

their default values is recommended.

• The next page illustrates a partial listing of these built-in

PowerShell variables.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 21 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 22 Dr. Mark Llewellyn ©

Variables In PowerShell

• These built-in PowerShell variables are divided into two types.

• The first type has a special meaning in PowerShell because

they store configuration information for the current

PowerShell session.

• Of these special variables, two are commonly used:

– $_ - contains the current pipeline object

– $Error - contains error objects for the current PowerShell session

• The next page illustrates an example of both:

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 23 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 24 Dr. Mark Llewellyn ©

Variables In PowerShell

• The second type of built-in variable consists of preference

settings used to control the behavior of PowerShell.

• The table on the next page describes these variables.

– NOTE: A Command Policy can be one of the following strings:

• SilentlyContinue

• NotifyContinue

• NotifyStop

• Inquire

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 25 Dr. Mark Llewellyn ©

Name Allowed
Values

Description

$DebugPreference Command Policy Action to take when data is written via Write-Debug in a

script or WriteDebug() in a cmdlet.

$ErrorActionPreference Command Policy Action to take when data is written via Write-Error in a

script or WriteError() in a cmdlet.

$MaximumAliasCount Integer Maximum number of allowed aliases

$MaximumDriveCount Integer Maximum number of allowed drives

$MaximumErrorCount Integer Maximum number of errors held by $Error

$MaximumFunctionCount Integer Maximum number of functions that can be created

$MaximumVariableCount Integer Maximum number of variables that can be created

$MaximumHistoryCount Integer Maximum number of entries saved in the command history

$ShouldProcessPreference Command Policy Action to take when ShouldProcess is used in a cmdlet

$ProcessReturnPreference Boolean ShouldProcess returns this setting

$ProgressPreference Command Policy Action to take when data is written via Write-Progress

in a script or WriteProgress() in a cmdlet.

$VerbosePreference Command Policy Action to take when data is written via Write-Verbose in

a script or Write-Verbose() in a cmdlet.

PowerShell Preference Setting Built-in Variables

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 26 Dr. Mark Llewellyn ©

Understanding Aliases In PowerShell

• Unless you are using a script, PowerShell can require a fair

amount of typing to run various command sequences.

• As with many scripting languages, PowerShell has an aliasing

mechanism for cmdlets and executables, which can cut down

on the amount of typing needed.

• Consider the two versions of the command shown on the next

pages.

• NOTE: this example doesn’t provide a major reduction in

typing per se, but aliases can save you some time and prevent

typos. To see the list of PowerShell aliases supported in the

current session use the get-alias cmdlet as shown on page

29.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 27 Dr. Mark Llewellyn ©

get-process | where-object {$_.company –match “.*Microsoft*”} | format-table Name, Id, Path -Autosize

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 28 Dr. Mark Llewellyn ©

gps | ? {$_.company –match “.*Microsoft*”} | ft Name, Id, Path -Autosize

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 29 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 30 Dr. Mark Llewellyn ©

Understanding Aliases In PowerShell

• There are several cmdlets that deal with aliases in PowerShell.

The previous page illustrates the get-alias cmdlet.

• There are a few more that allow you to define your own aliases

and to import and export aliases to other PowerShell sessions.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 31 Dr. Mark Llewellyn ©

Understanding Aliases In PowerShell

• The Export-Alias and Import-Alias cmdlets are used

to export and import aliases from one PowerShell session to

another.

• The New-Alias and Set-Alias cmdlets allow you to

define new aliases for the current PowerShell session.

• Note that by default, all aliasing pertains only to a PowerShell

session. Exiting PowerShell discards any existing aliases.

• For an alias to be persistent, it must be defined using the set-

alias cmdlet and defined in the profile.ps1 file. You

can find the location of this file on your machine by typing

$profile at the PowerShell prompt.

CNT 4603: Scripting – Windows PowerShell – Part 3 Page 32 Dr. Mark Llewellyn ©

CAUTION: Using Aliases In PowerShell

• Although command shortening may seem appealing, extensive

use of aliasing is not recommended.

• One reason is that aliases are not very portable to scripts. For

example, if you are using a lot of aliases in a script, you must

include a set-alias sequence at the start of the script to

ensure that those aliases are present, regardless of the machine,

or session profile, when the script runs.

• However, a bigger concern is the probability that an alias can

obscure or confuse the true meaning of commands or scripts.

The aliases you define might make sense to you, but not

everyone may share your logic in defining aliases. In general,

functions are a better way to go than extensive aliasing.

